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Building a source of low-dimensional chaotic signals with specified properties poses new challenges in
the study of nonlinear systems. We address this problem using two synchronized asymmetrically cou-
pled chaotic systems. As an uncoupled oscillator, each produces chaotic signals with distinctively
different properties. The chaotic signal produced by the synchronized oscillators possesses properties in-
termediate with respect to the two original signals. The properties of this synthesized signal can be con-

trolled by the ratio of the coupling parameters.

PACS number(s): 05.45.+b, 84.30.Ng

It has become straightforward to evaluate various
characteristics of a physical system using scalar observa-
tions from the system, even when the output is chaotic
[1]. The problem of designing a chaotic source which
produces chaotic signals with specified properties still
remains challenging. It would be quite interesting to
build “designer chaotic sources” with specified properties
for various uses. At this time one often focuses on a lim-
ited number of available chaotic systems instead of
designing ones well fit for a chosen purpose. While the
general mathematical solution of this problem does not
appear possible at this time, we suggest a method that ap-
pears to provide a practical solution in many instances.
For many applications of chaos (e.g., communication), it
is desirable to have a chaotic signal, which corresponds
to low-dimensional chaotic attractors so that one can
easily keep the system under control [2]. To generate this
kind of signal with desired properties we propose a
method which relies upon using the mutual synchroniza-
tion of chaotic motions [3,4]. The synchronization of
periodic motions is a convenient tool which is widely used
for control of the characteristics of periodic signals [5].
However, we will use synchronization of chaotic motions
for synthesis of chaotic signals.

We start with two chaotic signal generators each pro-
ducing a chaotic output signal. The parameters of these
two sources are distinct. We use these two generators to
construct another which will produce chaotic output
having different properties but still corresponding to a
low-dimensional attractor. To achieve this goal we cou-
ple two generators using their output terminals. When
the coupling is sufficiently strong, chaotic oscillations in
the two systems become synchronized. This leads us to a
class of low-dimensional attractors among which we can
make our choice by varying the mutual coupling all the
while remaining in the regime of overall synchronization.
The main point of using systems which are synchronized
is that the attractor in the phase space remains low di-
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mensional even though by coupling two systems we in-
crease the dimension of the total phase space. This is
critical to the eventual utility of the output of the coupled
system as high-dimensional chaotic attractors still pose
difficult computational and control issues. In this paper
we discuss our general idea and then illustrate the
method experimentally using two coupled chaotic elec-
tronic circuits. We demonstrate that in our example it is
possible to predict the properties of the chaotic output
from the new generator.

To describe the method we write the differential equa-
tions describing the dynamics of the two uncoupled
chaotic oscillators as

X=F(X,x),
x=f(X,x),
Y=G(Y)y),

(1)

(2)
y=g(Y,y) .
The scalars X and Y are the output signals of the sources.
The vectors x and y describe the dynamics of the remain-
ing degrees of freedom of the oscillators. Call the chaotic
attractor of system (1) CAy of system (2) CAy. We cou-
ple these via

X=F(X,x)+gx(Y—X),

) 3)
Y=G(Y,y)+gy(X—Y) .

We assume that when either gy or gy is sufficiently large,
the chaotic oscillations in subsystems (X, x) and (Y,y) be-
come synchronized [4]. As a function of the ratio
p=(gx/gy) the overall attractor CA . of the coupled sys-
tem goes to CAy when p—0, and the CAy when p— o0.
As p changes over this range the coupled system attrac-
tor CA . possesses properties intermediate with respect to
the properties of the original attractors. We designate
this transformation of attractors: “blending” chaotic at-
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tractors. When the original two attractors possess dis-
tinctively different properties, the properties of the at-
tractor CA . that appears as a result of such blending can
vary significantly, thus providing a wide choice of attrac-
tors from which the most desirable can be selected. At
the same time, since chaotic oscillations in the two sub-
systems are synchronized, the coupling does not
significantly increase the complexity of the signal leaving
the system low-dimensional, controllable, and therefore
useful for many applications.

Although in this description we made a few limiting re-
strictions, we now demonstrate that this method can be
easily employed in practice. As an example we create a
family of blended chaotic attractors by coupling two
chaotic electronic circuits which are synchronized by
means of asymmetric dissipative linear coupling.

The circuit diagram of the two coupled nonlinear cir-
cuits is shown in Fig. 1. See [6] for more details. Asym-
metric coupling is provided by resistors Ry and Ry
which follow the buffers. Note that the strengths of the
couplings gy and gy are inversely proportional to the
values of Ry and Ry. In the experimental setup the pa-
rameters of the circuits were chosen to be C; =334 nF,
C,=331 nF, C{=221 nF, C,=219 nF, L, =L,=144.9
mH, r, =347 Q, r,=349 Q, R, =3.10kQ, and R,=3.19
kQ. We use the gain at zero of the input voltage as the
control parameter of the nonlinear converter. The gains
of the nonlinear converters were set in such a way that
ay=15.1 and ay=19.2. The reason for this particular
selection of the parameters of the circuits is that in this
case two uncoupled circuits have chaotic attractors with
distinctively different properties. The projections of these
attractors reconstructed by means of time delay embed-
ding [1] are shown in Figs. 2(a) and 2(b).

In the experiment we fixed the value of the Y coupling
resistor Ry=76.2 . We found experimentally that for
this value of Ry the chaotic oscillations in two circuits
were synchronized regardless of Ry. In the synchroniza-
tion regime |X(¢)— Y (¢)| was less than 50 mV, while the
maximum amplitude of X (¢) ranged around 2 V. The on-
set of synchronized chaos was also confirmed by analysis
of local dimensions of the time series using the local false
nearest neighbors technique [1]. This analysis clearly in-
dicated that the local dimension of the attractor CA.
remained equal to 3 throughout the experiment just as in
each of the two uncoupled systems.

By varying Ry from O to « we observed a bifurcation

sequence that describes the transition of attractor CA.
from attractor CAy to attractor CAy. Both periodic and
chaotic attractors with various properties are seen in this
sequence. Thus we can select chaotic regimes that pro-

‘duce the outputs with properties varying within very
“wide limits.

Some of the attractors associated with
chaotic oscillations are shown in Fig. 3.

The signals corresponding to attractors shown in Figs.
3(b) and 3(c) are in Figs. 4(a) and 4(b). Each signal is a
chaotic sequence of impulses. However, the first one is a
sequence of impulses which have almost identical shape
but alternate the sign in a chaotic fashion. The second is
a sequence of impulses which change the sign periodically
but the shape of the impulses bears a chaotic modulation.
This difference can be detected by both looking at the
time traces and by computing the autocorrelation func-
tion for the two time series. These functions are shown in
Figs. 4(c) and 4(d).

In order to clarify the mechanism of blending chaotic
attractors in the circuits let us consider a particular case
when the elements of linear feedbacks in each circuit are
identical, but the nonlinear elements have different
amplification gains ay and ay. The behavior of such
coupled circuits is modeled by

X=x,+gx(Y—X),

X1=—X—'8x1+x2 > (4)

x,=vlaxf(X)—x;]—0ox,
and

Y=J’1 +gy(X_ Y) ’

NW=—Y—=by,+y,, (5)

V2=vlayf(Y)=y,]—oy,,
where time has been rescaled, and X (¢), x,(¢), Y (¢), and
y,(t) are the voltages across the capacitors C;, C}, C,,
and Cj, respectively. x,(¢) and y,(¢) are the rescaled
currents through the inductors L, ,. The parameters 6,
o, and y are positive and depend on the linear feedback
loop. The coupling coefficients are given by
gx=(1/Ry)L,/C;)"?and gy=(1/Ry)(L,/C,)"2

We held the internal parameters fixed in our analysis

and varied the couplings. When gy =gy =0, each circuit
exhibits chaotic oscillations and the corresponding at-
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FIG. 2. The projections of attractors CAy (a) and CAy (b)
reconstructed by time delay embedding with time delay 107g.
The sampling time 75 =20 usec.

tractors do not have the same invariant properties. By
coupling these different systems we create new attractors
with properties possessed by neither original system. We
observe the transformation that the attractor in the aug-
mented system undergoes when p changes from O to oo
keeping at least one of gy,gy sufficiently large to provide
synchronization of chaos in the two circuits.

It follows from the X and Y parts of Egs. (4) and (5)
that as long as x,(¢), y,(¢), X(2), and Y(¢) are finite and
at least one of gy and gy is sufficiently large, trajectories
in the phase space of the coupled circuits approach a
manifold of slow motions where X (¢)=Y (¢). This rela-
tion between X (¢) and Y (¢) is confirmed by experimental
observations as well. If we introduce new variables
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FIG. 3. The time delay reconstructed projections of chaotic
attractors CA; for (a) Ry=54.5Q, (b) Ry=77Q, ()
Ry=106 , (d) Ry=126 (0.
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FIG. 4. The time series of Y(z) for (a) Ry=77 Q and (b)
Ry=106 Q. (c) and (d) are the corresponding autocorrelation
functions.

then the equations for the Z variables describe the dy-
namics of slow motions, and they decouple from the rest
giving us

z,=z,,
Z,=—Z,—8Z,+2Z,, @)
Zy=vlaf(Z))—2Z;]—0Z, ,
where
aytgya
B gxg§+: ) ©

This demonstrates that there is a limit set of the trajec-
tories in the six-dimensional phase space of the original
system (4), (5), that is associated with the attractor CA
of the autonomous three-dimensional system (7). Since a
three-dimensional projection of this limit set is attracting
in Z subspace, the stability of this limit set in the six-
dimensional phase space is determined by the equations
for the z variables which are

2,=2zy—82;,
Z'2=—21_822+Z3 ) (9)
z-3=_y23—g-zz—f—y(ax-i-ay)f(ll(t)) ’

where g =gy +gy. This system is linear and therefore
the conditional Lyapunov exponents [7] of system (9),
conditioned on the trajectories of the CA ,, are the eigen-
values of the matrix

—g 1 0
-1 =8 1
0 —o —vy

(10)
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In the case of large g these become A;~—g and
Ay 3= —%[8+yi\/(8—y)2—40]. The Lyapunov ex-
ponent A, corresponds to the fast motions towards the
manifold of slow motions X =Y. The other two ex-
ponents determine the stability of the synchronized
motions with respect to perturbations tangential to
X=Y. These are always negative since ¥,8,0>0.
Therefore, when g is sufficiently large, the limit set,
defined by (7) in the phase space of (4),(5), is attracting.

In the limit g — o0, it is possible to derive integral rela-
tions that transform the projection of the full system at-
tractor onto the (X, x) subspace into the projection of this
attractor onto the (Y,y) subspace and vice versa. So,
when g is large enough, the chaotic oscillations in the two
circuits are synchronized in a generalized sense [4,8]. A
remarkable property of this manifold of synchronized
motions is that it mimics the phase space of our individu-
al nonlinear circuits with the value of a lying between ay
and ay. It follows from (8) that changing the ratio p for
the two coupled circuits is equivalent to changing the
effective value of a. By varying p over the range 0 to oo,
we should be able to observe exactly the same sequence of
bifurcations that takes place as the parameter a in system
(7) is changed from ay to ay. Thus, in this example we
can create new chaotic signals by coupling and synchron-
izing two chaotic generators, and we can predict before-

hand the properties of that signal, since we know the
properties of the circuit described by the Z motions. It is
precisely the dynamics of the individual circuits in our
coupled system with a new value of the parameter which
in practice may not be adjustable.

The technique of ‘blending” of chaotic attractors
based on the synchronization of chaos can be used to en-
rich the palette of chaotic signals while keeping them low
dimensional and thus useful for various applications. In
particular, one can synthesize symmetric chaotic attrac-
tors by synchronizing two chaotic systems which do not
possess symmetric attractors. The method can be of spe-
cial importance in those frequent cases when the control
of the internal parameters of each individual system is
limited.

We thank the members of INLS for numerous discus-
sions on this subject. This work was supported in part by
the U. S. Department of Energy, Office of Basic Energy
Sciences, Division of Engineering and Geosciences, under
Contract No. DE-FG03-90ER 14138, and in part by the
Army Research Office (Contract No. DAALO03-91-C-
052), and by the Office of Naval Research (Contract No.
NO00014-91-C-0125), under subcontract to the
Lockheed/Sanders Corporation.

[1] H. D. 1. Abarbanel, R. Brown, J. J. Sidorovich, and L. Sh.
Tsimring, Rev. Mod. Phys. 65, 1331 (1993).

[2] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64,
1196 (1990); Y-Ch. Lai and C. Grebogi, Phys. Rev. E 47,
2357 (1993); S. Hayes, C. Grebogi, E. Ott, and A. Mark,
Phys. Rev. Lett. 73, 1781 (1994).

[3] H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32
(1983).

[4] V. S. Afraimovich, N. N. Verichev, and M. 1. Rabinovich,
Radiophys. Quantum Electron. 29, 795 (1986).

[5] Ch. Hayashi, Nonlinear Oscillations in Physical Systems

(McGraw-Hill, New York, 1964); 1. 1. Blekhman, Synch-
ronization in Science and Technology (American Society of
Mechanical Engineers, New York, 1988).

[6] N. F. Rulkov, A. R. Volkovskii, A. Rodriguez-Lozano, E.
Del Rio, and M. G. Velarde, Int. J. Bif. Chaos 2, 669
(1992).

[71L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821
(1990).

[8] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D.
1. Abarbanel, Phys. Rev. E 51, 980 (1995).



